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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2763

GUST-RESPONSE ANALYSIS OF AN AIRPLANE INCLUDING
WING BENDING FLEXIBILITYL

By John C. Houbolt and Eldon E. Kordes
SUMMARY

An analysis is made of the gust response (including bending moment)
of an airplane having the degrees of freedom of vertical motion and wing
bendlng flexibility and basic parameters are established. A convenient,
but accurate, numerical solution of the response equatlons is developed
which is very well suited for making trend studies. An example treated
shows results which are in very good agreement with the results obtained
by a more precise but more lengthy method.

The method of determining a gust causing a known response is indi-
cated and a procedure is given for determining the response of an air-
plane directly from the known response of another airplane by ellmlnatlng
the common gust condition.

INTRODUCTION

In the design of aircraft the condition of gust encounter has become
critical in more and more instances, mainly because of the ever-increasing
flight speeds. Aircraft designers have therefore placed greater emphasis
on obtaining rational methods for accurately predicting the stresses that
develop. As a result, the number of papers dealing with the prediction
of stresses in an alrcraft traversing a vertical gust has significantly
increased. (See, for example, refs. 1 to 9.) Many of the papers have
treated the airplane as a rigid body and in so doing have dealt with
either the degree of freedom of vertical motion alone (refs. 5 to 8) o
with the degrees of freedom of vertical motion and pitch (refs. 7 and 9).

LThis paper is a revision and extension of a paper entitled "The
Determination of the Response Due to Gusts of One Airplane From the Known
Response of Another Airplane" published as TN No. Structures hO British
R.A.E., June 19M9, which was completed by Mr. Houbolt during a temporary
tour of duty with the Royal Aircraft Establishment. Since the present
paper is complete in itself, no further reference to the earlier paper
is necessary.
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Of greater concern in the consideration of gust penetration, however, is
the influence that wing flexibility has on structural response. This
concern has two main aspects: (1) that including wing flexibility may
lead to the calculation of higher stresses than would be obtained by
rigid-body treatment of the problem and (2) that wing flexibility may
introduce some error when the airplane is used as an instrument for
measuring gust intensity. Thus, there are also many recent papers which
treat the airplane as an elastic body. In most of these papers the
approach used involves the development of the structural response in
terms of the natural modes of vibration of the airplane (refs. 2 to 4).
Others used a more unusual approach, as for example, reference 1, which
deals with the simultaneous treatment of the conditions of equilibrium
between aerodynamic forces and structural deformation at a number of
points along the wing span. Whatever the approach, however, the main
disadvantage of these elastic-body analyses is that they are not very
well suited for making trend studies without excessive computation time.

In the present paper, the case of the gust penetration of an air-
plane having the degrees of freedom of vertical motion and wing bending
is considered. Wing bending was chosen because designers have expressed
greater concern about the influence of this flexibility on gust response
than they have about other types of flexibility. The paper has the
objective of trying to establish some of the basic parameters that are
involved when wing bending flexibility is included and of developing a
method of solution which is fairly well suited for trend studies without
excessive computation time. Such a procedure would be useful in evalu-
ation studies which are intended, for example, to evaluate the effect of
such factors as forward speed, spanwise mass distribution, gust length,
and gust shape.

The equations for response (including accelerations, displacements,
and bending moments) are derived and the basic parameters outlined. An
easy numerical solution for the response which is readily handled either
by manual or machine methods is then given. The inverse of the response
problem is considered briefly; that is, the method of determining the
gust causing a given response is indicated. Finally, on this basis, a
procedure is outlined whereby the response of one airplane may be found
directly from the known response of another airplane without the
necessity of establishing the gust causing the known response.

SYMBOLS

a slope of lift curve

deflection coefficient for nth mode, function of time alone
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aspect ratio of wing
span of wing
chord of wing
chord of wing midspan

Young's modulus of elasticity

s
1
nondimensional gust force, u/\ %T-w(s - o)do
0

external applied load per unit span
acceleration due to gravity
distance to gust peak, chords

bending moment of inertia

a

nondimensional bending-moment factor (Mj = Kj 5

pUVMCO)

aerodynamic 1ift per unit span of wing due to vertical motion
of the alrplane

aerodynamic 1lift per unit span of wing due to gust

mass per unit span of wing

net incremental bending moment at wing station J
moment of wing area about spanwise station under consideration
generalized mass of nth mode

incremental number of g acceleration

load intensity per unit spanwise length

‘distance traveled, %1 t, half-chords
o

wing area
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time, zero at beginning of gust penetration

vertical velocity of gust -
maximum vertical velocity of gust

forward velocity of flight

total weight of‘airplane

distance along wing measured from airplane center line

deflection of elastic axis of wing, positive upward

deflection of elastic axis in nth mode, given in terms of a
unit tip deflection

response coefficient based on ap,

fog on

second derivative of zg Wwith respect to s

second derivative of 2z with respect to s -

bending-moment response factor, ratio of bending moment
obtained for airplane considered flexible to bending moment
obtained for airplane considered rigid

distance interval, half-chords

! Co
v

reduced-frequency parameter,

8
nondimensional relative-density parameter, §6¥E§
o

B,

nondimensional bending-moment parameter, ——>3—
apcoMCO
mass density of air .

function which denotes growth of 1ift on rigid wing entering
a sharp-edge gust (Kiussner function) °
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Wy, natural'circular frequency of vibration bf nth mode

1-90 functioh'which dénotes growth of 1ift on an airfoil following
a sudden change in angle of attack (Wagner function)

0=1-0

Subscripts:

J  spanwise étation

n natural modes of vibration

m number of distance intervals traveled
Notation:

I I column matrix

[ ] square matrix

Dots are used to denote derivatives with respect to time; primes
denote derivatives with respect to s or o.

ANALYSIS

Equations for Structural Response

Equations of motion.- Consider an airplane flying horizontally into
vertical gusts, and suppose that it is desired to include wing bending
flexibility in determining the stresses induced by these gusts. The
problem is actually one of determining the response of an elastic wing
subject to dynamic forces. For dynamic forces of intensity F per unit
length, the differential equation for wing bending is, if structural
damping is neglected,

2
LEI£Z=-mﬁ+E (1)
oy oy

where w 1s the deflection of the elastic axis referred to a fixed
reference plane. The task of determining the deflection that results
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from the applied forces F may be handled conveniently by expressing
the deflection in terms of the natural free-free vibration modes of the
wing. With regard to the flight of an airplane through gusts, exami-
mation of a number of acceleration and strain records that have been
taken in normal flight with several different aircraft shows that the
response to gusts is composed primarily of a rigid-body vertical trans-
lation and fundamental-bending-mode excitation of the wing. Thus, the
assumption is made in the present analysis that the response may be given
with fair accuracy by considering only these two degrees of freedom.
This assumption is probably invalid when the airplane is flying near the
flutter speed, for then a large amount of coupled bending-torsion dis-
placement may occur. (See ref. 3.)

The wing deflection is thus assumed to be given by the equation
W= ag + agw (2)

where w; 1is the deflection given in terms of a unit tip deflection
along the elastic axis of the wing for the fundamental mode, and ag
and aj are functions of time alone. In this form an denotes the

free-body vertical displacement of the airplane (in this case the dis-
placement of the nodal points) and ay; 1s the part of the wing-tip

deflection which is associated with the fundamental mode, as illustrated
in the following sketch:

Reference plane

The use of symmetrical modes implies that only the symmetrical gust is
to be considered hereinafter.

Substitution of equation (2) into equation (1) yields

2
2 5] .. .
a8y §;§ EI S;;l = -m(ao + alwl) + F (3)
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From the following relation which expfesses the condition for natural
fundamental-mode vibration

2
3¢ 97wy 2
= EI —= = W) “mwy
5y2 8y2

equation (3) may be written
al(.l)lgmwl = —m(éo + Ea:lwl) + F ()-l-)

where u; 1s a natural circular frequency of vibration of the funda-

mental mode. If this equation is integrated over the wing span and use
is made of the following known orthogonality condition of the free-body
and fundamental modes:

b/2 ,
J( mv; dy = O (5)
b/ 2

the following equation results:

b/2

where My 1s the airplane mass. Now, if equation (4) is first multi-
plied through by w; and then integrated over the wing span and use is
made of equation (5), the following equation is obtained:

) ” b/2 :
Mia; + 0p™Mzaq = f Fwy dy (7)
J1/2

where M; 1s the generalized mass for the fundamental mode, that is,

b/2 _
M, =\/P/2 mwlgdy. Equations (6) and (7) represent, respectively,
~b
the equations for free-body motion and fundamental wing bending and can
be solved if the forces F are known. -
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For the present case of the airplane flying through a gust, the
force F 1is composed of two parts: a part designated by Ly due to
the vertical motion of the airplane (including both rigid-body and
bending displacements) and a part Lg resulting directly from the gust
(this latter part is the gust force which would develop on the wing
considered rigid and restrained against vertical motion). These two
parts are defined (see refs. 1 and 3) in the equation of F as follows:

t t '
F=LV+Lg=-%pcV\/; W1 - ot - Ti]dmr%pcvj; Qy(t - T)ar (8)

vhere 1 - ¢(t) is a function (commonly referred to as the Wagner
function) which denotes the growth of 1lift on a wing following a sudden
change in angle of attack and for two-dimensional incompressible flow
is given by the approximation

0.6%t

-0.09%t -
- 0.335¢ °© (9)

[1- ¢(tﬂA_ =1 - 0.165¢ ©

= 00

and ¥ (t) 4is a function (commonly referred to as the Kussner function)
which denotes the growth of 1lift on a rigid wing penetrating a sharp-
edge gust and for two-dimensional incompressible flow is given by the
approximation

-0. 26‘gt -2Vt

[u:y(t’)]A=oc> =1 - 0.5 - 0.5¢ © (10)

An additional term which involves the apparent air mass should be included
in equation (8); this mass term is inertial in character and may be
included with the structural mass (see ref. 1) although it is usually
small in comparison. The lift-curve slope a may be chosen so as to
include approximate over-all corrections for aspect ratio and compressi-
bility effects.

If w as given by equation (2) is substituted into equation (8)
and the resulting equation for F 1is substituted into equations (6)
and (7), the following two equations are obtained for the case of a
uniform spanwise gust:

My v Sy . v
5vs 20 = i/g (ao 5 al)[é - &(t - T)dT + . uy(t - m)art  (11)
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9
2y L oAy b8y .
a1 + a] = - —= ao + — al [; - ot - T:]dT +
apVs apVs o \S
S t
—1f ay(t - T)aT (12)
SJg
where (because of mode symmetry)
b/2 )
S = %jf c dy
0]
b/2
S, = %jp cw, dy & (13)
1 1
0
‘ b/2
So = 2J[ cwledy
0 J
Equations (11) and (12) may be put in convenient nondimensional
form by introducing the notation
s = %% t or o = %% T (14)
v k
VA = — S l
n = g °n (15)

where c¢, is the midspan chord of the‘wing and U is the maximum

vertical velocity of the gust. With this notation, equations (11)
and (12) may be written

Bozg' = - JF (zo" + ryz¢' )[@ - o(s - c:]do +\/p W(s - o)do | (16)
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s
ulzl" + ulxgzl = -%jp (rlzo" + r2zl")[; - o(s - oz]dc +
0

s
1
rlf T V(s - o)do (17)
0
where
-
o = 8MO
0 apcos
p = ._8_Ml_
1 apcgs
. > (18)
L 9%
2v
S
1
rl = _é_
S
_ Ve

and a prime denotes a derivative with respect to ¢. Equations (16)

and (17) are the basic response equations in the present analysis. The
five parameters appearing in these equations and given by equations (18)
depend upon the forward velocity, air density, lift-curve slope, and the
airplane physical characteristics: the wing plan form, wing bending
stiffness, and wing mass distribution. Experience has shown that vari-
ations in the physical characteristics cause significant variations in
the first three of the five parameters, while the last two vary only to
a minor extent. The first three are therefore the most basic param-
eters; uy is a relative-density factor, frequently referred to as a

mass parameter, and is associated with vertical free-body motion of the
airplane; Wy, similar to ugy, is the mass parameter assoclated with the

fundamental mode; and A by its nature may be interpreted as a reduced-
frequency parameter similar to that used in flutter analysis,
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It is significant to note that, if any one of the three quanti-
ities 2z, 27, and u appearing in equations (16) and (17) is specified

or known, the other two may be determined. Thus, if the gust is known,
the response may be determined, or conversely, if either Zg Or zj is

known, the gust may be determined. A useful equation relating zg and
z{ may be found by combining equations (16) and (17) so as to eliminate
the integral dealing with the gust. The result is the equation

s
U‘l " 2 ) 1‘2 n [ ' :l _ "
?I(Zl + N2y )+ 2(—— - . z1"|1 - (s - 0) do = HgZq (19)

o

which is used subsequently.

It may also be of interest to note that uozo" in effect defines a

frequently used acceleration ratio. From equations (12) and (11), the
rigid-body component of the vertical acceleration may be written

e _Lkyu
aO_co o)

or, when expressed in terms of the incremental number of g's,

An acceleration factor Ang based on quasi-steady flow and peak gust
velocity is now introduced according to the definition

- 20
AngW = 5 pSV 7
. An .
The ratio —— 1s thus found to be
Ang
An 1"
—_— = Z
An Ho%0
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Where the gust shape is represented analytically and the unsteady-
lift functions are taken in the form given by equations (9) and (10),
solution of the response equations may be made by the Laplace transform
method, but such a solution is more laborious than desired. Therefore,
a numerical procedure which permits a rather rapid solution of the equa-
tions has been devised and is presented in a subsequent section. It may
be well to mention, however, that the response equations are suitable
for solution by some of the analog computing machines.

Bending stresses.- The bending moment and, hence, the bending
stresses that develop in the wing due to the gust may be found as
follows: The right-hand side of equation (1) defines the loading on
the wing; suppose this loading is noted by p, then

P = -mw + F

By use of equations (2) and (8), and the notation of equations (14)
and (15), this equation becomes

LU i "
p = - E;_(ZO" + Zl"wl) - apcvq/; (zo" + 2z wl)[; - ¢o(s - GZldc +

S
=3 ch/n u'V(s - o)do
2 0

If the moment of this loading is taken about a given wing station,
say Y3 the following equation for incremental bending moment at that

station would result:

b/2
My =j; p(¥ - ¥3)dy
J
=-—1-‘LY—U—(M zo" + M z")—apVUfsM zq" + M z"[l-®(s-0i]do+
co \ 00 m, <1 0 ( cq“0 c1“1 ) -

S
gpvmcofo w'(s - o)do (20)
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where the M's bearing double subscripts are first moments defined as
follows:

b/2 . b/2
Mg = mp v M= [ ey - yger
J Y3

Jfb/Q mw 4 M —‘Jfb/g
", (¥ - ¥3)dy 2T Wy (¥ - vy)dy

> (21)

and yj is the station being considered. Division through of equa-
tion (20) by the quantity % pVUMCO gives the following equation which

is considered to define a bending-moment factor Kj at wing station 1y,
' J

M.

Kj = a___ﬂ___
> pVUMCO
8Mm0 S
_ 1 " "
- apCoMco< WISZI>- fo<Z° i )E'MS_OJdN
s
JF i y(s - o)do : (22)
0 [9)

The factor % pVUMCO may be regarded as the maximum aerodynamic bending

moment that would be developed by the gust under conditions of quasi-
steady flow and with the wing considered rigid and restrained against
vertical motion at the root. The bending-moment factor K; may thus

be seen to be the ratio of the actual dynamic bending moment that occurs
to this quasi-steady bending moment and therefore may be regarded as a
response or an alleviation factor.
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A more convenient form for the bending-moment factor may be
obtained by solving equations (16) and (17) simultaneously for the

s s
quantities f ZO"E - o(s - 0}] do and f Zl"l:l - 0(s - oﬂ do and
0 0

substituting these values into equation (22). With these operations the
following equation results:

_ wo, [T 73 W, 17T 22y
= Ho = Mp}%0 5 H1 - m1)% SR
(23)
where
~
Mc
Ir = _l
3 MCO
8
_ Mg
Ny = =2 > (2)
0 apcOMCO
&My
M = apcoMCO

It is seen that, when bending moments are being determined, three addi-
tional basic parameters (egs. (24)) appear. The similarity of o

and ny to Ko and Hy is to be noted; first moments of masses and
areas are involved rather than masses and areas.

Reduction to rigid case.- It may be of interest to show the reduc-
tion of the response equation to the case of the airplane considered as
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a rigid body. Thus, if 2z, is equated to zero in equation (16), the
following equation for rigid-body response is obtained:

s ' s
uozo" = - JQ zo"[i - o(s - oi}do +\/; %% V(s - ¢g)do (25)

If z;" is set equal to zero in equation (22) and use is made of

equation (25), the following equation for the bending-moment parameter
for the rigid-body case is obtained

Ky = (Mo - no)2o" (26)

where zO” is the acceleration of the airplane considered as a rigid

body.

Matrix Solution of Response Equations

In this section a rather simple numerical solution of the response
equations (16) and (17) is presented. The procedure is readily adapted
to either manual or punch-card machine calculations.

The derivation proceeds on the basis that the response due to a
given gust is to be determined. The airplane, Jjust before gust pene-
tration, is considered to be in level flight and hence has the initial
conditions that the vertical displacement and vertical velocity are both
zero. These conditions mean that 20, 2y, 2g', and z;' are all zero

at s = 0. The gust force can be shown to start from zero and, there-
fore, the additional initial conditions can be established that zp"

and z;" ‘are also zero at s = 0. By the numerical procedure, solution

for the response at successive values of s of increment ¢ will be
made and, for the case being considered, it is found advantageous to
solve directly for the accelerations rather than the displacements.

In order to make the presentation more compact, the following
notation is introduced:

B = Zl" ’ (27&)
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and

£(s) fo u y(s - o)do (270)

With this notation, equation (16) would appear simply as

In accordance with numerical-evaluation procedures, the interval
between O and s 1is divided into a number of equal stations of
interval € so that s = me. The product of (a + rlB) and 6(s - o)

is assumed formed at each station and, with the use of the trapezoidal
method for determining areas, the unsteady-lift integral in equation (28)
may be written in terms of values of a« and B at successive stations
as follows, where the mth station corresponds to the value s:

s
- 1
\/; (a + rle)e(s - 0)do = e(em_lal +6p 005 + . . .+ Byap g + 5 eoam) +

1
ex (05 1Py * B oot . . .+ 08 1 + 3 60Pn)

(29)

in which 6g, 67, . . . are, respectively, the values of the
1 -0 functionat s =0, s=¢, ... (ao and By do not appear

because of the initial conditions). With this equation, equation (28)

may be written at various values of s or at successive values of m;
the result, for example, for m = 1 is

Hoal = -Geoal - GrleoBl + fl

and for m = 2,

Koy = —E(EGlal + eoag) - Grl(EGlBl + 9082) + £,
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The square matrix C 1is seen to be similar to the other square
matrices in that it is triangular with all the elements in one
column made up of the elements in the previous column moved down one
TOW. = ' ;

An equation in |B| alone is obtained by substituting |a| from
this equation into equation (30) to yield o

 {Eme - e - (3)

which is the basic response equation relating B (that is zl") to the

gust force. This equation represents a system:of linear simultaneous
equations where the order of the matrix is arbitrary; that is, the equa-
tions may be written up to any desired value of s = mé. The solution
for response can therefore be carried on as far as desired. Fortunately,
the equations are of such a nature that simultaneous solution is not

required. -As mentioned, each of the matrices. [A], [B], and c] 1is

triangular with all elements O above the main diagonal and with all
elements on the main diagonal of each matrix equal; therefore, the main

diagonal elements of ﬁﬂ will also all have the same value and the
elements above this diagonal will be 0. If each element on the main
diagonal of .EQ], is denoted by d; and [?i] is the matrix D with

the main diagonal elements replaced by O's, then

B = a1 + o]

With this equation, equation (33) may be written

Bl = ol - o lel e
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Expanded, this equation has the form

B f1 E BE
Bo fo dy O Po
P3 f3 d3 dz O B3
B, =chl' £, -dil- 4, 43 4, © By, (35)
By £ A B

It can be seen that a step-by-step solution for the successive values
of B may now be made; that is, B1 1is solved for first then, with g1

established, B, 1is solved for, and so on as far as is desired. With

the value of |B| thus established, solution for |a| may now be made

directly from equations (32). Values of the displacements zg and 2z

may be obtained directly from a and B; z) may be obtained from equa-
tion (31); and 2y may be obtained from this same equation with B
replaced by «a.

Some mention should be made with regard to the selection of the time
interval €. A rough guide to use in selecting € can be obtained by
considering M\, which appears as the characteristic frequency in most
response calculations. The period based on this frequency would be

Ty = %?. Experience has shown that a time interval in the neighborhood

of 1/12 of this period yields very good results (in general less than

1 percent error); accordingly, a reasonable guide in choosing ¢ would
be the equation ¢ = é%. Some convenient value near that given by this
equation should be satisfactory; in general, it will be found that ¢
may be 1 or greater.

The procedure thus outlined provides a rather rapid evaluation of
the response due to a prescribed gust. With the response thus evaluated
the bending moment at any value of s or the complete time history of



NACA TN 2763 R

bending moment may be found by application of equation (23). It should
be evident that, if response values for either zy" or z;" are known,

the gust causing this response can be found by suitable manipulation of
equations (30) and (32). Thus, if 2zy" is known, B in equations (30b)

and (32b) may be eliminated to give the equation

{00 + o1} el = 1o

Direct substitution of zo" in this equation allows Ifl' to be deter-

mined. In most practical cases the second term in equation (30b) con-
tributes only a small amcunt and may be dropped with little resulting
error in the gust force. The equation for |f| is then simply

[A]]«] = 12l

Determination of Response of One Airplane From
Known Response of Another Airplane

In general, a given gust condition produces different responses
either for two different airplanes or for the same airplane with dif-
ferent loading conditions or forward velocity. It would be expected,
however, that the response of the two airplanes could be correlated
through the common gust condition. This correlation may be demonstrated
quite easily by means of the equations given in the preceding section.
The case to be treated is as follows: The time history of bending
moment due to a gust is assumed to have been measured in one airplane
and it 1s desired to calculate directly from this time history what the
bending moment due to the same gust would have been in another airplane.
Although the derivation is presented in terms of bending moment, a
gsimilar derivation could be made in terms of either accelerations or
displacements.

If use is made of equation (31) to write the successive values of
the displacement 2z, in terms of the accelerations, the bending-moment

factor, equation (23), may be written in terms of the accelerations alone

and the following matrix equation for K may be formulated:
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1
Ky a1 B 3 RIER
1
Ko as Bo 1 z Bo
K a B 2 1 1 B
3 3 3 5 6 3
=d + e + he (36a)
B m-1 A
Kn I m ¢ m
where
rir3 - T
d = __153___2 Ho = Mg
I‘l - I'2 .
_ I‘l - T
1 -2
rH -
h=_%" "3 ulxe
r® - xp
With the use of equations (32) this equation may be written
x| = [E]ls] (36b)

where

[E] = [‘%[C] + e[1] + he? l'g]:I | (37)

»
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in which [i] is thé.identity matrix and

O\ [+

=
N+

n
[
(02 [ gl

m"l * s

L

Substitution of the value of B as obtained from equations (36) into
equation (33) gives the following relation between the gust forces and
the bending-moment parameter:

i O\

el = BIE k| (38)

The gust-force matrix If] (see eq. (27b)) may be expressed in
terms of the gust velocity by the following process: It is assumed that
the initial vertical velocity of the gust is zero and that successive
values of gust velocity of increment € are designated by u;, up,

Ug « o . oo First-order difference equations are used to approximate the
slope of the gust velocity, so that, in general,

ut. = u'm+l - u'ﬂl—l
m 2¢

If this equation is used and the integral equation (27b) is handled by
the trapezoidal integration method similar to that used for equation (29),
the gust force may be written in terms of the successive values of gust
gradient so as to form the following matrix equation:

»
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[ u

1 ¥y ] T%
u

fo \E V1 -

=1 (39)

2 u

Yy

fl{- L\h‘_ - \VQ W:)) - ‘lfl 1112 Wl —U—

where Wl, WE, W3 . . . are successive values of the V¢ function.
Substitution of this equation into equation (38) allows for the solution

of ‘% in terms of the parameter K as

- [V 0 ] K (k0)

a
U

where [¥] is the square matrix in equation (39). Different airplanes

flying through the same gust will experience the same vertical gust
velocity for equal absolute distances of gust penetration; that is,

(Vt) (Vt)

airplane 1 = airplane 2

From equation (14), then, the following conditions must prevail:

(sco)l (sco)2

(41)

(eco)l (eco)2

where the subscripts 1 and 2 denote airplane 1 and 2, respectively.
Satisfaction of the latter condition insures that the gust velocity as
given by equation (40) would be the same for the two airplanes being
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compared. This common gust condition may therefore be eliminated to
yield the result . . =

(O l), = (7B E1xl),

If it is assumed that K for airplane 1l is known, then K for air-
plane 2 may be written

W, - [0 WL mE e, o

where again the time interval chosen for the two airplanes must satisfy
relation (41). Thus, if the bending moment due to a given gust sequence
is known for one airplane, the bending moment that would develop in
another airplane encountering the same gust sequence can be determined
from this known bending moment by the use of equation (42). TIf the mid-
chords of the two airplanes are equal, the time interval may be taken
equal and equation (42) reduces to ' ' '

Kl - [EE L mE K], e

SUMMARY OF CALCULATION PROCEDURE

As a convenience, a‘summary of the basic steps necessary for calcu-
lating the response of an airplane to a gust is given as follows:

For accelerations and displacements:

(1) With the use of the fundamental mode, wing plan form, and mass
distribution, calculate the»quantities uo; F A, ry, and r, as
given by equations (18). '

{ .
(2) Choose the time interval ¢. A convenient rule of thumb is

€x é%, but for most cases ¢ =1 should give satisfactory results.

(3) Determine values of the unsteady-lift function 6 =1 - & at
successive multiple intervals of ¢. (See fig. 1.) Also determine
corresponding values of the gust-force integral f(s), equation (27b).

As an aid, curves for f(s) are presented in figure 1 for the sharp-edge
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gust and in figure 2 for various-length sine gusts, sine2 gusts, and
triangular gusts. (The curves in fig. 1 have been obtained from

eqs. (9) and (10). These approximations, although rather accurate for
the lower values of s, are noted to cross; actually, they should not

cross and are known to have the same asymptotic approach to unity.)

(%) From the following definitions:

Ay = ko + €69
Ay = 266, (m> 1)
By = rleeo
By = 2ri€6,, (m>1)
C = L-;.—l-(l + 6222) + <r_' - rl>€90
Cpm = (m - 1)% A2+ 2(% - rl) €0, 1 (m >1)
get up the following matrices:
_Al —_
Ap A
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B, ]
B, By

[B] = |B3 B, B
B, By By B
EN i
€2 G

Then calculate the matrix

bl = I +

(5) Solve for the values of B (which equals zl") from equa-

tion (33), by the method outlined following equation (33). (See
eq. (34).) The values of 2z} and «a (which equals zo") can then be

calculated from equations (31) and (32).
For bending moment:
(6) In order to compute bending moment, determine r3; T, and

as glven by equations (24), where Mmo, Mml, MCO, and MCl in these

equations depend on the particular wing station being considered and are
given by equations (21).
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(7) Determine bending moment by use of equation (23) with the
values of response already established. This equation may be applied
directly to any desired time value. Maximum bending moment usually
occurs very close to the time when 2z; is a maximum.

EXAMPLES

Example A.~ In order to provide an illustration and give an idea
of the accuracy of the present analysis, the response to a sharp-edge
gust of the two-engine-asirplane example considered in reference 1 was
determined. The weight distribution over the semispan, the wing-chord
distribution, and the fundamental bending mode are shown in figures 3,
h, and 5., The frequency and deflection of the fundamental mode were
calculated by the method given in reference 10. The solution is made
for a forward velocity of 210 miles per hour and a gust velocity of
10 feet per second.

The lift-curve slope used in reference 1 was 5.41; to be consistent,
the same value was used here. Furthermore, the unsteady-1lift function
used for a change in angle of attack in the example presented in refer-
ence 1 was glven by the equation

- =1 - -0.381s
(1 -0), ¢ =1-0.36Le

rather than by equation (9). Thus, this equation was also used here.
The gust unsteady-lift function used was that given by equation (10).

The various physical constants and the basic response and bending-
moment parameters are given in table 1; the values of the unsteady-1lift
function and the values of the gust force are listed in table 2. The

matrices [A], [B], and Bi] used in the solution are given in table 3.

The solution for response is shown in figure 6(a) where the deflec-
tion coefficients agy and ay 1in inches are plotted against distance

traveled in half-chords. The corresponding deflection quantities for
the example given in reference 1 were determined and, for comparison,

are also shown in the figure. A similar comparison is made in fig-

~ure 6(b) for bending stresses at the fuselage and engine stationms,
stations O and 1 from reference 1. The agreement is seen to be good.

Example B.~ A second example is included in order to illustrate one
means by which the method may be used to evaluate the influence of bending
flexibility upon the response to a gust. The physical characteristics for
the airplane considered in this example are listed also in table 1, and
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equation (9) is used for the function 1 - & instead of the values
given in table 2. Maximum values of the bending moment that develops
at the fuselage station during flights through sine gusts of various
lengths have been determined, both for the airplane considered flexible
and for the airplane considered rigid. The results are shown in fig-
ure T(a) where maximum values of the bending-moment parameter K are
plotted against gust-gradient distance H. The difference between the
two curves represents the increase in bending moment due to effects of
wing bending flexibility. By taking the ratio of K for the flexible
case to K for the rigid case, a type of dynamic response factor is
formulated which gives a direct measure of the influence of wing flexi-
bility. This ratio is designated 7y and is shown in figure 7(b). As

an example of the significance of this plot, the value of ™ = 1.16

at H =5 means that flexibility results in a l6-percent dynamic over-
shoot in the stress from the value that would be obtained at H =5 on
the basis of a rigid-body analysis. It may be seen also that the value
of 7M is approximately unity for values of H = 10 and greater; there-

fore, in this range of gust-gradient distances a rlgld—body treatment
would be sufficient for this airplane.

DISCUSSION

The derivation presented herein is intended to provide a convenient
engineering method for calculating the response of an airplane to a gust
where wing bending flexibility is included. The method is believed to be
well-suited for making trend studies which evaluate, for example, the
effect on response of such factors as mass distribution, speed, and
altitude. Although the unsteady-lift functions for two-dimensional
unsteady flow are presented, the method is general enough so that the
unsteady-1ift functions for finite aspect ratio, for subsonic compress-—

ible flow, and for supersonic flow may be used as well. (See refs. 7
and 11 to 15.) ; ‘ \ :

Since the numerical method is based on an integration procedure, it
possesses the desirable feature that a fairly large time interval may be
used and good accuracy still obtained. As an accuracy test, solutions of
equations (16) and (17) were made for several cases by the exact Laplace
transform method as well as by the numerical process, in which process
the time interval was selected according to the rule of thumb suggested.
When the results were plotted to three figures, the difference between
the two solutions was barely discernible.

Additional bending modes could be included in the analysis but this
refinement is really not warranted. Some calculations made with addi-
tional modes gave results which differed only slightly from the results
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obtained when only the fundamental mode was used. The good agreement

of results obtained in example A with the results obtained by the more
precise method given in reference 1 also illustrates this point.
Furthermore, if additional degrees of freedom are to be used, it would
appear more important to include wing torsion and airplane pitch. The
extent to which torsion influences the results is probably governed most
by the nearness to the flutter speed. The Importance of airplane pitch
is probably governed most by the gust length; some investigations dealing
with pitch have indicated that except for very light wing loadings the
pitch of the airplane does not influence the results appreciably until
gust lengths of from 20 to 30 chords or larger are involved. Thus, the
present analysis, although limited to the degrees of freedom of vertical
motion and wing bending, should probably be sufficiently satisfactory
for speeds near the crulsing speed and for gust-gradient distances up to
approximately 10 chords.

The analysis may be useful in assessing the significance of wing
flexibility in the technique of measuring gust intensity by means of an
airplane. In this technique gust severity is usually measured by means
of an accelerometer placed at the center line of the airplane. In order
to obtain a rough idea of whether flexibility may have some effect on
this measurement, calculations for the maximum accelerations at the
center line and for the maximum acceleration at the nodal points (the
true center-of-gravity acceleration) may be made for various assumed
gust lengths. A comparison of these computed maximum acceleration values
should give some idea as to the extent to which wing flexibility may
alter the measurements in actual flight.

CONCLUDING REMARKS

The aralysis presented herein for the response of an airplane to a
gust should provide a useful means for evaluating the effects of wing
flexibility. A convenient, but accurate, numerical sclution of the
response equations is developed which is well-suited for trend studies
such as the evaluation of the effects of mass distribution, speed,
altitude, and similar factors.

As indicated by an example, the method gives good agreement with
the results of the more precise but more lengthy recurrence matrix
method of NACA Rep. 1010.

The method permits the evaluation of a gust causing a known response.
A procedure is given wherein the known gust response of one airplane may



NACA TN 2763 31

be used directly to determine what the response would be for another
airplane flying through the same gust condition.

Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics,
Langley Field, Va., May 21, 1952,
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APPENDIX

DERIVATION OF EQUATION RELATING DISPLACEMENT TO

PREVIOUS SUCCESSIVE VALUES OF ACCELERATION

In this appendix, a derivation is given of equation (31) which gives
the value of displacement in terms of successive past-history values of
acceleration. Suppose that the second derivative (acceleration) of a
function is approximated by a succession of straight-line segments as
shown in the following sketch:

1" 1"

where the segments cover equal intervals ¢ of the abscissa s and the
initial condition that zy" = O 1is assumed to apply. If a dummy origin

is now considered at the station m - 1, the segment between sta-
tions m - 1 and m may be represented by the equation

Two successive integrations give the relations for z'p and zp as
follows:

le - Z"

2! = Z"m—ls 4 I — m-1 .2 4 gt _

m-1

2 z" - Z"
n s . %m m-1 53 + ozt

zZ = Z = 4 == s + z
m-1 "3 Ge : m-1 m-1
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where the constants of integration =z!' and z, 1 (initial conditions

m-1
for the interval) have been introduced. If s 1s set equal to e in
these two equations, the following equations result:

Z'm = -%(Z"m + Z"m-l) + Z‘m_l (Al)
2 2
Zm = 56_— Z"m + %—' Z”m_l + Z'm_lE + Zm—l (Ag)
From these two equations the values of 2'p and 2z, at any time

interval may be given in terms of the second derivative at all previous
time intervals. For example, with initial conditions of z"y = 2'g = 0,

equation (Al) becomes for m = 1

z) - (A3)

and for m = 2

m

11 1"
2'2 = §(z 5+ 2 l) + z'l

Combining this equation and equation (A3) results in the relation

1"
Z 2)

This process may be carried through for each of the time stations to

yileld the following general equation for z'm:

el [l

z'o = e(z"l +

AN e(z"l + 2" + z"3 S A % z"m) (Ak)

which, of course, 1s the trapezoidal approximation of the area under the
z"-curve. Equation (A2) for zp may be treated similarly and it is
found that the general equation for zy may be written

Zy = eg[im -1)z"  + (m- 22"+ . oo+ 22" o2 o+ % z”%] (A5)
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This equation thus gives the displacement at any time station in terms
of the accelerations at all previous time stations.

It may be noted that, if higher-order segments (parabolic or cubic)
had been used instead of straight-line segments to approximate the
second derivative, equations similar in form to equations (AlL) and (A5)
would also result. For most practical purposes, however, the accuracy
of equation (A5) is sufficiently good as long as the interval € 1is
chosen so that the straight-line segments roughly approximate the second
derivative.



NACA TN 2763 35
REFERENCES

1. Houbolt, John C.: A Recurrence Matrix Solution for the Dynamic
Response of Aircraft in Gusts. NACA Rep. 1010, 1951. (Supersedes
NACA TN 2060.)

2. Bisplinghoff, R. L., Isakson, G., Pian, T. H. H., Flomenhoft, H. I.,
and O'Brien, T. F.: An Investigation of Stresses in Aircraft
Structures Under Dynamic Loading. Contract No. NOa(s) 8790,
M.I.T. Rep., Bur. Aero., Jan. 21, 1949,

3. Goland, M., Luke, Y. L., and Kahn, E. A.: Prediction of Wing Loads
Due to Gusts Including Aero-Elastic Effects. Part I - Formulation
of the Method. AF TR No. 5706, Air Materiel Command, U. S. Air
Force, July 21, 1947, : :

4. Radok, J. R. M., and Stiles, Lurline F.: The Motion and Deformation
of Aircraft in Uniform and Non-Uniform Atmospheric Disturbances.
Rep. ACA-41, Council for Sci. and Ind. Res., Div. Aero.,
Commonwealth of Australia, 1948. :

5. Donely, Philip: Summary of Information Relating to Gust Loads on
Airplanes. NACA Rep. 997, 1950. (Supersedes NACA TN 1976.)

6. Bisplinghoff, R. L., Isakson, G., and O'Brien, T. F.: Gust Loads on
Rigid Airplanes With Pitching Neglected. Jour. Aero. Sci., vol. 18,
no. 1, Jan. 1951, pp. 33-k2.

7. Bisplinghoff, R. L., Isakson, G., and O'Brien, T. F.: Report on Gust
Loads on Rigid and Elastic Airplanes. Contract No. NOa(s) 8790,
M.I.T. Rep., Bur. Aero., Aug. 15, 1949, (This citation is intended
to include ref. 3 of this reference paper which is listed therein as
"Greidanus, J. H.: 'The Loading of Airplane Structures by Symmetrical
Gusts' (in Dutch with an English summary). Nationaal Luchtvaart-
laboratorium, Amsterdam, Rapport No. XIV, 1948.")

8. Mazelsky, Bernard: Charts of Airplane Acceleration Ratio for Gusts
of Arbitrary Shape. NACA TN 2036, 1950.

9. Greidanus, J. H., and Van de Véoren, A. I.: Gust Load Coefficients
for Wing and Tail Surfaces of an Aeroplane. Rep. F.28, Nationaal
Luchtvaartlaboratorium, Amsterdam, Dec. 19L8.

10. Houbolt, John C., and Anderson, Roger A.: Calculation of Uncoupled

Modes and Frequencies in Bending or Torsion of Nonuniform Beams.
NACA TN 1522, 1948,



36

11.

12.

13.

1k,

15.

NACA TN 2763

Jones, Robert T.: The Unsteady Lift of a Wing of Finite Aspect
Ratio. NACA Rep. 681, 1940.

Radok, J. R. M.: The Problem of Gust Loads on Aircraft. A Survey
of the Theoretical Treatment. Rep. SM. 133, Dept. Supply and Dev.,
Div. Aero., Commonwealth of Australia, July 1949.

Biot, M. A.: Loads on a Supersonic Wing Striking a Sharp-Edged Gust.
Rep. No. SA-247-S-7, Cornell Aero. Lab., Inc., Jan. 17, 1948,

Miles, John W.: Transient Loading of Supersonic Rectangular Airfoils.
Jour. Aero, Sci., vol. 17, no. 10, Oct. 1950, pp. 64T7-652.

Miles, John W.: The Indicial Admittance of a Supersonic Rectangular
Airfoil. NAVORD Rep. 1171, U. S. Naval Ord. Test Station,
Inyokern, Calif., July 21, 1949.



L

NACA TN 2763

37
TABLE 1.- PHYSICAL CHARACTERISTICS FOR EXAMPLE AIRPLANES

Example A | Example B

W, 1b . e e e 37,450 33,450
s, ft° . 870 870
b, in. . 1120 1120
Cos in. . 15k4 16k
p, 1b/ft3 . . . . 0.0765 0.0765
vV, ft/sec . . 308 37k
U, ft/sec . . 10 | ——cmmee
sec C e e e 0.0208 0.0183
half-chords . . . . 1.0 1.0

a 5.41 6.28
Ho 64,16 46.8
H1 0.9045 0. 748
X . . Oo )'1'353 O‘ 392
e 0.2181 0.225
s . . 0.1358 0.143
r, Jfuselage station 0.452 0.457
engine station 0.547 | —==emmm

0 fuselage station 23.49 15.94
engine station 10,19 | memm———

N fuselage station 3.665 2.555
engine station 3.391] | emm—mee-

*g in.'3 fuselage station 0.00537 0.00537
1’ engine station 0.00669 | —mcem—-

*z here denotes distance from neutral axis to extreme fiber.

“‘“H;,F’
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TABLE 2.- 1 - ¢ ORDINATES AND GUST-FORCE ORDINATES
FOR SHARP-EDGE GUST, ¢ = 1.0

m Op or (1 - Q)A=6~ f or V
0 0.6390 0

1 L7534 <377
2 .8315 ST

3 .88k49 .635

4 .921k4 .692

5 .9463 . 736
6 .9633 -T7L
7 .97k . 798
8 .9829 .821

9 .9883 .85
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L

6k, 799
1.5068 64.799
1.6630 1.5068 6k4.799
1.7698 1.6630 1.5068
1.8428 1.7698 1.6630
1.8926 1.8428 1.7698
1.9266 1.8926 1.8428
©1.9498 1.9266 1.8926
1.9658 1.9498 1.9266
1.9766 1.9658 1.9498
- 0.139%
.3286 0.1394
.3627  .3286 0.1394
L3860  .3627 .3286
k019  .3860 .3627
L4128 4019  .3860
k202 4128 LLol9
L4252 Jh2o2 Lh128
4287 Lhos2 L hoo?
L4311 L he87 Lhese
F_u.5367
1.3954 L4,5367
2.2445 1.3954 4,5367
3.0735 2.2Lh5 1,395k
3.8889 3.0735 2.2u45
L.694k9 3.8889 3.0735
- 5.4947 k4,604 3.8889
6.2900 5.4947 L, 6949
7.0824 6,2900 5.4947
. 7.8726 7.082%k 6.2900

TABLE 3.- MATRICES USED IN EXAMPIE A

A Matrix
-
6k, 799
1.5068 6k4. 799
1.6630 1.5068 64,799
1.7698 1.6630 1.5068 6k4.799
1.8428 1.7698 1.6630 1.5068 6h.T99
01.8926 1.8428 1.7698 1.6630 1.5068 6k.799
1.9266 1.8926 1.8428 1.7698 1.6630 1.5068 64%.799
B Matrix
0.1394

.3286 0.1394

L3627  .3286 0.139L4

.3860 .3627 .3286 0.139k

.ho19  .3860 .3627 .3286 0.1394

L4128 Lk019  .3860 .3627 .3286 0.1394

.h202 4128 .h019  .3860 .3627 .3286 0.139%
C Matrix

4.5367
1.3954% 4.5367
2.2445 1.395% L4,.5367
3.0735 2.2445 1.395h L.5367
3.8889 3.0735 2.2445 1.3954 L4.5367
L. 6ok 3.8889 3.0735 2.24h5 1.3954 k4.5367
5.uokT L. 69k9 3.8889 3.0735 2.24k5 11,3954 h.5367;

W
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Fuselage
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b5

£

Engine
4960
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1245 Ib

Structural weight 2380 Ib

1
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Figure 3- Semispan weight distribution for the two-engine airplane of

Wing chord, 8
ft

example A.

L l
2 4 6 8 1.0
Wing station, Y
ing station 55

Figure4:-Wing chord distribution for airplane of example A.
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. —— Present analysis
——= Reference |
R 6
5 -
ab
o, and q,
in 3 Present analysis
and reference |
2F o,
‘ | —
0
6 Fuséloge station
5 N A oo TGN
Engine station
4 —
3 .
Stress, ksi
o

O.I' Second

- ! I | | | | ! | | |
0 | 2 3 4 5 6 7 8 9 10
s, Half-chords

- (b) Stresses.

Figure 6.- Response of example airplane A to a IO-foot-per—seéond shorp-edge qust.
V=210 miles per hour.
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Flexible
Rigid
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(b) Dynamic response factor for moment.

Figure 7 — Bending moment and dynamic response factor for airplane

of example B due to flight through sine gusts.
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